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n the companion paper to this series (Aminzadeh and de
Groot, 2004), the main advantages of soft computing
were highlighted. Among them were integrating infor-
mation from various sources with varying degrees of

uncertainty. Geosciences data used in exploration are inher-
ently imprecise, uncertain and fuzzy. 

This, combined with many linguistic rules and subjective
treatment of the data, make it a good candidate for the use of
fuzzy set theory for the processing, analysis and interpreta-
tion of E&P data. Figure 1, from Wilkinson et al (2003),
illustrates the difficult task of modelling and analyzing the
mother earth (geologic outcrops) with numerical (in this case
seismic) measurements.

The main advantage of fuzzy logic is its versatility in
combining the quantitative data and qualitative information
and subjective observation and rules. Given the nature of the
information available for interpretation (such as seismic
data, well logs, geological and other geosciences data) fuzzy
sets theory can help in developing an appropriate framework
to carry out quantitative analysis of the information and data
which are the aggregate of both qualitative and quantitative
types. 

After a brief overview of prior work, we give several
examples of applications of fuzzy logic in exploration.

What is Fuzzy Logic? 
Fuzzy logic, which is a combination of fuzzy set theory and
fuzzy rule based methods, was introduced by Lotfi Zadeh, a
professor at the University of California at Berkeley, in the
1960s. It was specifically developed to handle data that are
allowed to be both ambiguous and imprecise. 

There are several fundamental differences between fuzzy
logic and the traditional probability theory and Boolean
algebra. The rigid boundaries of the latter such as (black and
white), (yes or no), (true or false), (p (a) = 1-p (not a)), (0 or
1) are smoothed out in fuzzy logic. Having the choice
between two groups, one does not need to belong to one or
the other. Through ‘membership functions’, an item can be a
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I 'As complexity increases precise statements lose meaning
and meaningful statements lose precision’

Lotfi Zadeh, inventor of fuzzy logic

Figure 1 Illustration of inherent fuzziness in geology and the
corresponding seismic data
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member of two or more groups with different degrees of
membership grades simultaneously. Fuzzy logic is a non-tra-
ditional logic addressing Bertrand Russell’s concern: ‘All tra-
ditional logic habitually assumes that precise symbols are
being employed. It is therefore not applicable to this terres-
trial life, but only to an imagined celestial one. The law of
excluded middle is true when precise symbols are employed,
but it is not true when symbols are vague, as, in fact, all sym-
bols are.’ 

In fuzzy logic, everything is a matter of degree. Since
fuzziness or ‘gray area’ is present in nearly everything we do,
fuzzy logic with its ‘degree of membership’ concept allows
proper treatment of ‘multi-valence’. Unlike classical logic
which is based on crisp sets whose members are either ‘True’
or ‘False’, fuzzy logic views problems as having a degree of
‘Truth.’ Fuzzy logic is based on the concept of fuzzy sets
whose members may be ‘True’ or ‘False’ or any number of
gradations between ‘True’ and ‘False.’ Another way of
expressing this is that a member of a fuzzy set may have
varying amounts of both ‘True’ and ‘False.’ In classical or
crisp sets, the transition between membership and non-mem-
bership in a given set for an element in the universe is abrupt
(crisp). For an element in a universe that contains fuzzy sets,
this transition can be gradual rather than abrupt. Therefore,
‘fuzzy’ and ‘fuzziness’ can be defined as having the fuzzy set
characteristic. Mapping and sets in fuzzy theory are
described and characterized as membership functions. Figure
2 shows how concepts such as ‘low porosity’, ‘average poros-
ity’ and ‘high porosity’ could be represented. Naturally, such
subjective definitions may be different for different petrole-
um systems. 

It is clear that there is a fundamental difference between
probability and the concept of membership grade.
Probability statements are about the likelihood of an out-
come: an event either occurs or it does not, and one can
assign odds to it. But in the fuzzy world, one cannot state
unequivocally whether an event has occurred or not, one can
only postulate the extent to which the event occurred. In the
process of dividing all the reservoirs into three categories
using the fuzzy concept we observe two things: First, there is
an overlap between classes. A reservoir with a porosity of

12% is simultaneously a member of the mid porosity and
high porosity reservoir classes, albeit with different member-
ship grades. Second, there is a smooth transition for member-
ship grades (rather than going from 1 to 0 abruptly). This
eliminates the need to establish rigid boundaries when trans-
lating linguistic terms to computer language. 

In the past several years fuzzy logic has become an
increasingly important problem-solving methodology in the
realms of soft computing and applied computational intelli-
gence. It provides an elegant way to make definitive conclu-
sions based on noisy, imprecise, sparse or incomplete input
information. This, coupled with its ability to allow seamless
incorporation of additional data into highly complex systems
and to do it with mostly ‘white box’ methods, makes fuzzy
logic an attractive alternative to conventional techniques.
Kosko (1993), in the book titled Fuzzy Thinking describes
fuzzy logic, and its relevance to many real life (and death!)
issues from politics to religion and from philosophy to wash-
ing machines. He argues that for thousands of years (since
Aristotle) in Western philosophy, the world is either black or
white, right or wrong, to be or not to be and all or nothing.
In contrast, Eastern philosophy (starting with Buddha and
then the Sufis) sees the world from a different perspective,
with the unity of ‘ying’ and ‘yang’ and allowing coexistence
of ‘to be’ and ‘not to be’. Such openness to ambiguity is the
essence of fuzzy logic.

Fuzzy logic in geoscience.
As in many other disciplines, earth scientists are confronted
with the need to deal with many diverse data types which
come from a wide variety of sources, have different scales
and different degrees of imprecision and uncertainty. It is not
uncommon to hear our data described as noisy, imprecise,
sparse, incomplete, etc. To further complicate matters, it is
often the case that we must resort to grossly oversimplified
models of the large and complex systems that we attempt to
analyze.

In spite of this, many of our data processing and analysis
techniques are able to function adequately only when both
the model and data are known with certainty. In this situa-
tion it is not surprising that the results of our analysis have a
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high degree of sensitivity to inadequacies in both the model
and data components. 

To combat this problem, it is usual to attempt to process
the data to the point where application of our precise algo-
rithms can give a reasonable answer. A second alternative
would be to preferentially employ methodologies that are
tolerant to the imprecision in the input data.

In order to utilize a fuzzy logic rule-based approach it is
necessary to gather together all the data and non-numeric
information relevant to the project. For typical geoscience
applications, possible knowledge base components might
include: 

■ Data Elements
o Seismic (3D, 4D, 4C, prestack), 
o Well logs, MWD
o Cores, thin sections
o Production data

■ Knowledge elements
o Theoretical relationships
o Heuristic rules of thumb, empirical rules 
o Expert knowledge 
o Attribute to property mappings 
o Geological analogues
o Statistical models, simulator ‘tricks’

■ Definitions of the fuzzy partitions of the input space (i.e.
which properties are of interest, Vp, Vs, f, Kv, Kh, lithol-
ogy, Sw…) 

■ Membership functions (i.e. what shape do the member-
ship functions have?)

Over the last 25 years, there have been several attempts to
incorporate fuzzy logic into the geosciences. Chappaz (1977)
and Bois (1983, 1984) proposed the use of fuzzy set theory
in the interpretation of seismic sections. Bois used fuzzy logic
as a pattern recognition tool for seismic interpretation and
reservoir analysis. He concluded that fuzzy set theory, in par-
ticular, can be used for interpretation of seismic data which
are imprecise, uncertain, and include human error. He sug-
gested that these types of error and fuzziness cannot be taken
into consideration by traditional mathematics: however, they
are accounted for by fuzzy set theory. He also concluded
that, using fuzzy set theory, it is possible to extract geologi-
cal information from seismic data. Therefore, one could, in
principle, predict the boundary of a reservoir in which
hydrocarbon exists.

Griffith (1987) used fuzzy logic to predict different strati-
graphic units from drilling data. He used subjective classifi-
cations of pagioclase feldspars involving many overlapping
membership functions with different percentages of anor-
thite. He then used drilling data with different variables such
as rotary speed, bit weight, mud weight and torque among
others to create numerical lithostratigraphic units from such

data. The results obtained were consistent with those meas-
ured directly from well logs. Lashgari (1990) also reported a
series of applications of fuzzy sets theory in geostatistical
analysis and clustering of seismic attributes using fuzzy K-
means method. An and Moon, (1990) used fuzzy set theory
to integrate geological and geophysical data. Aminzadeh
(1994) highlighted applications of fuzzy expert systems in oil
exploration. Tomhane et al (2002) adopted qualitative infor-
mation based on linguistic descriptions (e.g. ‘low,’ ‘medium’
and ‘high’) which are commonly used by expert geologists
for permeability prediction from well logs and compared
them against traditional methods based on semi-empirical
equations. 

Most recently, there have been three books on applica-
tions of soft computing in exploration. The three books,
Wong et al (2002), Nikravesh et al (2003) and Sandham et al
(2003), all have sections highlighting some of applications of
fuzzy logics in the oil industry. 

Examples of recent applications
In this section we highlight a few recent applications of fuzzy
logic and point to potentially high impact uses in different
earth science problems.

Fuzzy differential equations
Partial differential equations (PDE) are at the foundation of
physical laws governing two different oil industry applica-
tions: Darcy’s law and wave equation. The first has to do
with the movement of fluids through porous media. The sec-
ond governs propagation of waves (both elastic and electro-
magnetic) through the subsurface. How to solve these equa-
tions, under various assumptions for their respective param-
eters, has been the subject of numerous doctoral dissertation
topics, academic research programmes, oil and gas company
technology development activities and service companies’
software packages. They all attempt to make the solution
more feasible, assumptions more realistic and approxima-
tions more acceptable.

Many geophysical techniques such as migration, DMO,
wave equation modelling as well as the potential methods
(gravity, magnetic, electrical methods) use conventional par-
tial differential wave equations with deterministic coeffi-
cients. The same is true for the partial differential equations
used in reservoir simulation. For many practical and physical
reasons, deterministic parameters for the coefficients of these
PDEs can lead to unrealistic situations (for example, medium
velocities for seismic wave propagation or fluid flow for
Darcy equation). Stochastic parameters or alternatively,
fuzzy coefficients can provide us with a more practical char-
acterization. Fuzzy coefficients for PDEs can prove to be
more realistic and easy to parameterize. 

As was suggested in Aminzadeh (1995), using wave equa-
tions with random or fuzzy coefficients to describe subsurface
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velocities and densities in statistical and membership grade
terms, enables a better description of wave propagation in
the subsurface, particularly when a substantial amount of
heterogeneity is present. Moreover, more generalized applica-
tions of geostatistical techniques will emerge, making it pos-
sible to introduce risk and uncertainty at the early stages of
the seismic data processing and interpretation loop.

Given the complex nature of hydrocarbon bearing reser-
voirs and the considerable heterogeneity of the rock forma-
tions through which seismic waves propagate or fluids (oil,
gas and water) flow, parameterization of those equations is a
formidable task. The extremely sparse nature of the available
data, coupled with very limited direct measurements (well
logs, flow rates, and core samples) makes the modelling and
validation job even more difficult. In addition, different types
of uncertainties, measurement errors, and approximations
associated with idealistic assumptions of the medium with
respect to governing physical laws, makes the theoretical
equations less reliable. 

Once we recognize the inherent inadequacies of the con-
ventional mathematical techniques and classical equations
based on deterministic and crisp parameterization, we under-
stand the need for alternatives. Even if we have to substan-
tially rewrite the book on reservoir simulation and geophys-
ical imaging, we do need to move to stochastic and fuzzy-
logic based methods. That is, we need to use wave equations
comprised of random or fuzzy coefficients describing subsur-
face geometry, velocities and densities. This will enable us to
describe and parameterize the medium through which
acoustic waves propagate, particularly when a substantial
amount of heterogeneity is present, more effectively. 

Likewise, Darcy’s law, describing the permeability of
rocks in terms of ‘measurable’ quantities, can be generalized
to account for imprecision, uncertainty and measurement
errors. Permeability is an important reservoir property. It
controls the flow rate and directional movement of different
fluids (namely gas, water and oil) through the reservoir for-
mations. Darcy’s method, based on a partial differential
equation, is established for an idealized situation dealing
with ‘horizontal linear flow of an incompressible fluid’.
Realistically, in a highly heterogeneous and anisotropic,
multi-phase fluid environment, these assumptions are too
restrictive and a more sophisticated and rigorous treatment
of the problem becomes necessary. 

A recent book by Nikravesh et al (2004) is a first step
towards introducing fuzzy partial differential and fuzzy rela-
tion equations to the oil industry. It is envisioned that these
methods will begin to find some relevance and application in
many petroleum industry problems. This will enable us to
treat model parameterization, inversion and reservoir simu-
lation more effectively and with more consistency with the
real problems we are facing every day. Using fuzzy differen-
tial equations, we no longer need to find the illusive ‘precise’

equations to describe the ‘precise physical phenomena’, for
solving our increasingly complex problems.

Stratigraphic interpretation 
One of the major strengths of fuzzy logic lies in the concept
of a linguistic variable. This is a concept that has particular
importance for earth science. While much of geophysical and
geological data is numerical in nature, there have been many
ad hoc attempts to include semantic information in the
knowledge discovery process. Fuzzy logic provides a robust
framework within which this type of data integration occurs
in a natural way. Here we show how many stratigraphic con-
cepts could be formulated through fuzzy logic, relying on its
ability to handle linguistic qualifiers. This example is taken
from Aminzadeh and Simaan (1991). Three types of deltaic
facies, prodelta, delta-front, and alluvial are characterized
according to their seismic response by the following guide-
lines adopted from the classic paper by Brown and Fisher
(1977). The words in italics highlight the inexact and fuzzy
nature of these rules:

Prodelta and distal delta-front, barrier facies: Reflection
patterns for these facies in dip sections are horizontal to
steeply inclined, oblique, layered patterns within a zone that
ranges from poorly layered to reflection-free or locally chaot-
ic. Oblique reflections may converge (and baselap) down-
ward (basinward). In strike sections, the facies commonly
exhibit convex-upward, conformable drape-to-mounded-
chaotic, or reflection-free patterns with some evidence of
channel or gully erosion. On the relict shelf, the prodelta
reflections are discontinuous except for a few strong reflec-
tions, amplitudes are generally low except for reflections
with moderate continuity, and spacing is very erratic.

Delta-front, barrier-bar facies: Reflection patterns in dip
sections are horizontal to slightly inclined, parallel-layered
near the base, grading upward irregularly into chaotic or
reflection-free patterns with common convex-upward dif-
fractions and poorly defined, mounded reflections. Subtle,
inclined reflections within chaotic zones may represent delta-
front or barrier-bar of flap and, hence, may constitute inter-
nal time lines. In a strike section, the basal reflections of the
zone exhibit drape patterns and local chaotic, to reflection-
free, zones display subtle, parallel-layered to draped, reflec-
tions and abundant diffractions. Basal reflections exhibit
strong continuity, but continuity diminishes upward in the
unit. The best continuity occurs in dip sections. Amplitudes
are moderate to high in basal, high-continuity reflections, but
low in chaotic intervals; spacing is moderately uniform in
basal reflectors, but erratic in the upper part of the zone.

Alluvial, delta-plain facies: Reflection patterns in dip sec-
tions are principally horizontal, parallel, rarely divergent lay-
ered to locally reflection-free; locally, erosional channels may
be inferred. In strike sections, the reflections are weak, paral-
lel-layered to subtle-mounded, chaotic-to-drape patterns.
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Continuity of reflections range from excellent to fair in dip
sections, but continuity is poor to fair in strike sections;
amplitude is variable (high in continuous reflections and
poor in chaotic zones); and spacing is very regular in zones
of high-continuity reflections but irregular in the remainder
of the unit.

Given the nature and structure of rules such as these, to
implement them in an expert system based on classical
(exact) mathematics is nearly impossible. The obvious solu-
tion is the use of a system based on fuzzy inference. The fol-
lowing data (facts) are assumed available. 

A1. dip section reflection pattern,
A2. strike section reflection pattern,
A3. dip section reflection continuity,
A4. strike section reflection continuity,
A5. dip section reflection strength, and
A6. strike section reflection strength.

Note that A1 and A2 are fuzzy quantities defined over the
fuzzy subset X1 with membership grades of f i

1 and f i
2, i = 1,

2, . . . I, where I is the number of elements in X1. Table 1 out-
lines the described rules. Also, subsets of X1, X2, X3, with all
the possible elements in them, are defined. For example:

X1. (Horizontal, oblique, vertical, layered, convex
upward, convex downward, drape mounded).
X2; (Locally chaotic, discontinuous reflections, continu-
ous reflections)
X3; (Low reflection amplitude, high reflection amplitude,
reflection free).

Given the fuzzy information and rules, the input data goes
through a fuzzy inference mechanism, the result of which is
a fuzzy classification of the data into possible stratigraphic
types; prodelta, delta front, alluvial (Y, Y2, and Y3) with dif-
ferent membership grades (g1, g2, g3, . . .). Figure 3 shows a
possible fuzzy inference network for this example.

Figure 3 is only for illustration and is not meant to incor-
porate the rules of Table 1. However, the figure does show,
conceptually, how a series of fuzzy rules can be combined to
reach a fuzzy outcome. This example illustrates the basic
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concept of knowledge representation using fuzzy logic with-
out going into any detailed theoretical discussion. 

Modelling reservoir permeability using seismic and log data
Permeability is a measure of fluid conductance in porous
media. It is the most difficult reservoir property to estimate
but of great importance to reservoir management decisions,
such as drilling location and water injection. Two types of
data were provided for this work: well log data and core
data. In this method, the permeability transform process is
first established using the control data and then applied
everywhere in the reservoir.

It is commonly observed that permeability is related to
other rock properties, although a theoretical mathematical
equation to describe such a relationship does not exist. The
objective of this work is to build a process that approximates
such a relationship. The particular rock properties used in
this methodology are the elastic parameters (velocity, density
and porosity) derived from either log or seismic data. This
was essential so that the model could be used to estimate

reservoir permeability everywhere seismic data is available.
We carry out this modelling task using Genetic Programming
(GP), Koza (1992) and Adaptive-Network-based Fuzzy
Inference Systems (ANFIS), and Jang (1997).

A hybrid GP-fuzzy system 
Frequently, permeability is highly dependent on the nature of
the rock formations (litho-facies). Each litho-facies can have
a wide range of permeability values and even more troubling,
can exhibit rapid permeability variations. Moreover, differ-
ent permeability ranges demonstrate different geological
characteristics. As a result, it is virtually impossible to build

one generic transform that gives good permeability estima-
tion for all types of reservoir rocks. We therefore adopt a
divide-and-conquer approach to build the permeability
transform system:
■ The first layer of the system identifies the lithology group. 
■ The second layer of the system predicts permeability range

(low, med, high). 
■ The last layer of the system estimates the actual perme-

ability value. 
To test the system, the log data from five wells were used. All
of them have matching core permeability data. Table 2 gives
the number of data in each lithology group and permeability
range. These groups and ranges are established based on geo-
logical knowledge and the analysis of the data sets. The total
number of data points is 827. 

One of the classical ways to estimate permeability is use
of the V-shale estimate. At the well locations this can be
obtained from the gamma ray log. Upon cross-plotting V-
shale vs. permeability (Figure 4), it is apparent that these two
have a complicated relationship, although in general the
higher the V-shale value, the lower the permeability. The
standard approach is to generate an S-curve to fit these data
and use this to predict permeability within the reservoir. We
will see that this usually results in a poor estimate of actual
permeability. Part of our seismic data analysis is the identi-
fication of lithology. Hence, we can use this ability to per-
form this analysis on a per lithology basis. An analysis of the
X-plot data suggests four lithology groups: sand, shaly sand,
sandy shale and shale with the V-shale cut points at 0.15,
0.4 and 0.75. 

We can see from these data that there does indeed exist
both a wide range and a rapid variation of permeability val-
ues within each lithologic facies. It is clear that a simple
regression on Vshale will not be sufficient to give realistic
permeability estimates. Consequently, the usual practice is
to perform a regression on Vshale, plus some other log
properties. In this case the S-curve is a function of Vshale
and porosity.

The fuzzy inference system 
The genetic algorithms (GA) used to train the classifiers for
predicting permeability ranges will be discussed in a subse-
quent paper on the topic. Here, we discuss the ANFIS mod-
elling tool that is a TSK fuzzy inference system based on the
given input and output data. A TSK fuzzy system has the
following structure: The first component is a set of input
membership functions (MFs). An MF maps crisp inputs to
linguistic values or labels. An MF can have any shape, such
as triangular, Gaussian and trapezoidal, as long as it varies
between 0 and 1. 

The transformation of a crisp input into degree (between
0 and 1) of match with a linguistic value is called ‘fuzzifica-
tion’. Fuzzy rules are conditional statements in if-then for-
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Figure 4 V-shale vs. log10 permeability.
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mat. The ‘if’ part consists of linguistic values and fuzzy
operators (AND, OR, NOT). The ‘then’ part is a first order
linear equation (ax+by+c). An example TSK fuzzy rule is
given here: 
■ If porosity is high and density is low,

permeability = -42572*porosity-53/velocity-
115807*density + 260911.

Fuzzy inference is a method that interprets the input values
and, based on the fuzzy rules, assigns output values. In a
TSK system, the output value is calculated based on the fir-
ing strength wi of each rule. ANFIS represents a TSK system
as a feed-forward network architecture that is similar to a
neural network

The first learning step determines the number of fuzzy
rules (layer 2). The clustering algorithm first partitions the
data into groups and then generates a minimum number of
rules to distinguish the fuzzy qualities associated with each
of the groups. The shapes of input membership functions
(layer 1) are not learned but specified by users. Depending

on the shapes of input membership function selected, differ-
ent parameters (e.g. mean and standard deviation for
Gaussian) are initialized. Meanwhile, the output parameters
(e.g. the coefficients in the linear equations) are initialized.
The second learning step adjusts input and output parame-
ters to minimize the error. More specifically, in the forward
pass, training inputs go forward till layer 4 and the output
parameters are identified by the least squared estimate. In
the backward pass, the error rates propagate back and the
input MF parameters are updated by gradient decent. 

Performance comparison with the conventional
approach shows that the hybrid system (Perm-FIS) gives
permeability estimations that are closer to the core perme-
ability (Perm-Core). Figure 5 shows the conventionally esti-
mated core permeability vs the actual core permeability for
the five wells used in the study.

While the general agreement is reasonable, there is a
broad degree of scatter in these plots, reflecting the inability
of a single transform to adequately account for the complex-
ity of the actual permeability distribution. The hybrid sys-
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Figure 6 The hybrid system perform-
ance (estimations vs. core permeability).
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Figure 5 The original regression trans-
form performance (estimations vs. core
permeability).
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Figure 7 Performance of different methods overlain on the
same permeability log plot together with the actual core sam-
ple values.
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Figure 8 Raw data (from Boadu, 1997) 

Table 3 Boundary of rules extracted
from data.

tem (Perm-FIS) results give permeability estimations that are
much closer to the actual core permeability (Perm-Core),
Figure 6.

Figure 7 shows performance of each of the (a) regression
on Vshale alone, (b) regression on Vshale and porosity and
(c) the fuzzy-hybrid system methods. It is clear to see that the
Vshale alone result is not acceptable, and it is further evident
that the fuzzy-hybrid system outperforms the usual best
practice method.

Prediction of permeability from porosity, velocity 
and attenuation
Here a neural-fuzzy model is developed for nonlinear map-
ping and rule extraction (knowledge extraction) between
porosity, grain size, clay content, P-wave velocity, P-wave
attenuation and permeability. This section is adapted from
Nikravesh and Aminzadeh (2001). The well data set includes
information on grain size, porosity, clay content, P- wave
velocity, P-wave attenuation and measured permeability
(from right to left in Figure 8). These data were originally
used by Boadau (1997). The following rules are the basis for
prediction of permeability from other measurements using
fuzzy membership functions.
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IF Rock Type= Sandstones 
AND Porosity=[p1,p2] 
AND Grain Size =[g1,g2] 
AND Clay Content =[c1,c2] 
AND P-Wave Vel.=[pwv1,pwv2] 
AND P-Wave Att.=[pwa1,pwa2] 
THEN K*= a0+a1*P+a2*G+a3*C+a4*PWV+a5*PWA.

Where, P is %porosity, G is grain size, C is clay content,
PWV is P-wave velocity, and PWA P-wave attenuation and
K, predicted permeability. Table 1 show typical rules extract-
ed from the data. Note that for computational convenience
all data from different logs are scaled uniformly between -1
and 1, and all the results are in this normalized Figure 8 Raw
data (from Boadu, 1997) domain. The available data were
divided into three data sets: training, testing, and validation.
The neuro-fuzzy model was trained based on a training data
set and continuously tested using a test data set during the
training phase. Training was stopped when it was found that
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Figure 9 Membership functions for dif-
ferent ranges of (a) porosity, (b) P-
Wave attenuation 
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the model’s prediction suffered upon continued training.
Next, the number of rules was increased by one and training
was repeated. Using this technique, an optimal number of
rules were selected. 

In Table 3, Column 1 through 5 show the membership
functions for porosity, grain size, clay content, P-wave veloc-
ity, and P-wave attenuation respectively were derived for
each of the above properties. For example, Figures 8a and 8b
show such functions for porosity content and P-wave atten-
uation. Different colour curves represent extremely low, very
low, low, average, high, very high and extremely high poros-
ity and attenuations (from left to right). 

Based on these functions and the rules described above,
permeability was predicted. Figure 10 shows the resulting
permeability predictions based on a different set of input
data (1997) in that the most influential rock parameter on
the attenuation is the clay content. In addition, this method
has the capability to rank different components of the input
data on their influence in prediction. 

Figure 10 Prediction results against the
original measurements of permeability
with different input data
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Conclusions
We have demonstrated the use of fuzzy logic in different
aspects of exploration and development in the petroleum
industry. In spite of the many applications, such as well log
analysis, reservoir property prediction and stratigraphic
analysis that have been presented, the full impact of fuzzy
logic in geosciences is yet to be realized. As more applications
come along, particularly the hybrid systems, it will become
increasingly clear that fuzzy logic has a central role to play in
the earth sciences. Perhaps the proposed implementation of
fuzzy differential equations, both for formulating acoustic
wave propagation in the earth or fluid flow in the reservoirs,
will begin to more fully realize the potential of fuzzy logic. 
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